A new approach to gas sensing with nanotechnology.

نویسندگان

  • Swati Sharma
  • Marc Madou
چکیده

Nanosized gas sensor elements are potentially faster, require lower power, come with a lower limit of detection, operate at lower temperatures, obviate the need for expensive catalysts, are more heat shock resistant and might even come at a lower cost than their macro-counterparts. In the last two decades, there have been important developments in two key areas that might make this promise a reality. First is the development of a variety of very good performing nanostructured metal oxide semiconductors (MOSs), the most commonly used materials for gas sensing; and second are advances in very low power loss miniaturized heater elements. Advanced nano- or micro-nanogas sensors have attracted much attention owing to a variety of possible applications. In this article, we first discuss the mechanism underlying MOS-based gas sensor devices, then we describe the advances that have been made towards MOS nanostructured materials and the progress towards low-power nano- and microheaters. Finally, we attempt to design an ideal nanogas sensor by combining the best nanomaterial strategy with the best heater implementation. In this regard, we end with a discussion of a suspended carbon nanowire-based gas sensor design and the advantages it might offer compared with other more conventional gas sensor devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties

Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine.  The as-coated films were preheated at 150 ºC fo...

متن کامل

ZnO nanoparticles as sensing materials with high gas response for detection of n-butanol gas

The high crystallinity ZnO nanoparticles with an average particle diameter 30 nm have been successfully synthesized with a surfactant-mediated method. The cationic surfactant (cetyltrimethylammonium bromide, CTAB) and the hydrous metal chlorides (ZnCl2⋅2H2O) appear to be the good candidates for obtaining a high yield of nanoparticles. The structural and morphological characterizations were carr...

متن کامل

Theoretical Approach for Detection of POCl3 Molecule by the Boron Nitride Nanosheet-based Sensing Nanodevices

To detect POCl3 molecule, adsorption phenomena of this molecule on the pure, Al- and Si-doped BN sheet surfaces were investigated via density functional theory (DFT) approach. The most stable adsorption complexes, including POCl3/BN (O-B), POCl3/Al-BN (O-Al), and POCl3/Si-BN (O-Si), were predicted with the adsorption energies of about -8.64, -37.01 and, -62.01 kcal mol-1, respectively. Upon the...

متن کامل

Couple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor

Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...

متن کامل

Sensing Performance of Sc-doped B12N12 Nanocage for Detecting Toxic Cyanogen Gas: A Computational Study

Adsorption of cyanogen molecule on the surface of pristine and Sc-doped B12N12 nanocage is scrutinized using at DFT calculations to investigating its potential as chemical nanosensors. The results show that cyanogen is weakly adsorbed on the pristine B12N12 and consequently its electrical properties are changed insignificantly. In order to improve the...

متن کامل

Design and Simulation of a New Highly Sensitive Gas Sensor Based on Negative Refraction Photonic Crystal

In this paper, design and simulation of a new highly sensitive gas sensor based on a hybrid photonic crystal (PC) structure, containing negative and positive refractive index sections, is presented. It has been shown that using a PC with negative refraction in the first section, the transmitted power is concentrated on the entrance of the sensing channel, and the transmission of the proposed se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 370 1967  شماره 

صفحات  -

تاریخ انتشار 2012